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Abstract

SATNet is an award-winning MAXSAT solver that can be used to infer logical
rules and integrated as a differentiable layer in a deep neural network [1]]. It
had been shown to solve Sudoku puzzles visually from examples of puzzle digit
images, and was heralded as an impressive achievement towards the longstanding
Al goal of combining pattern recognition with logical reasoning. In this paper, we
clarify SATNet’s capabilities by showing that in the absence of intermediate labels
that identify individual Sudoku digit images with their logical representations,
SATNet completely fails at visual Sudoku (0% test accuracy). More generally, the
failure can be pinpointed to its inability to learn to assign symbols to perceptual
phenomena, also known as the symbol grounding problem [2], which has long
been thought to be a prerequisite for intelligent agents to perform real-world logical
reasoning. We propose an MNIST based test as an easy instance of the symbol
grounding problem that can serve as a sanity check for differentiable symbolic
solvers in general. Naive applications of SATNet on this test lead to performance
worse than that of models without logical reasoning capabilities. We report on the
causes of SATNet’s failure and how to prevent them.

1 Introduction

Machine learning systems have become increasingly capable at a wide range of tasks, with neural
network based models outperforming humans at tasks like object recognition [3]], speech recognition
[4}15]], the game of Go [6} 7], Atari videogames [8| 9], and more. Nonetheless, the success of deep
learning comes with significant caveats: neural networks require immense amounts of labeled data
for training, can be easily tricked by tiny input perturbations or spurious correlations, and succumb to
brittle generalization when tested on data that deviate ever so modestly from the training distribution.
Critics point to these caveats as evidence that deep learning, in its current incarnation, is really just
performing a sophisticated type of pattern matching, the likes of which can only ever constitute
intelligence in narrow, circumscribed domains [[10} [11]].

By comparison, human intelligence can be applied more generally. This has been argued to be a result
of two distinct modes of cognition: System I and System 2 [12,[13]. System 1 happens quickly and
without conscious effort, for example comparing the size of objects or locating the general source of
a sound. On the other hand, System 2 involves slow and deliberate attention, for example solving for
a complicated arithmetic equation or checking that an argument is logical. Current machine learning
systems have been likened to System 1 [14], because System 1 mostly involves the use of associative
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memory, and is highly susceptible to cognitive biases and sensory illusions. Symbolic Al algorithms
that are based on logic and search more closely resemble System 2.

To achieve robust human-level Al that can solve non-trivial cognitive tasks, it is crucial to combine
both System 1 like pattern recognition and System 2 like logical reasoning capabilities in a seamless
end-to-end learning fashion. This is because in many practical problems of interest, it is difficult
and expensive to collect intermediate labels to train specific machine learning sub-components. For
example, it appears infeasible to build a ‘danger’ classifier for a self-driving car, where every possible
dangerous scenario is pre-determined and categorized beforehand. Researchers are thus far able to
combine both capabilities in a single Al system, but not train them end-to-end. Famously, OpenAI’s
very impressive achievement of controlling a robotic hand to solve a Rubik’s cube required the
separate use of a machine learning system to perform the dexterous manipulation and a discrete solver
to decide the side of the cube that should be turned [[15]].

Attempts to bridge the two capabilities seamlessly belong to one of three approaches. The first
involves augmenting deep learning models with soft logic operators [[L6H22]] or combinatorial solving
modules [23H27]. However, this approach typically requires the programmer to pre-specify intricate
logical structures according to the problem domain. Moreover, these logical components are fixed
and not amenable to learning. The second approach uses sub-symbolic reasoning techniques like
Recurrent Relation Networks to implicitly pick up on logical structures within the problem [28-30].
This approach improves on the first by learning the logical structure implicitly by optimization, but
nevertheless also necessitates careful feature engineering. The third approach is the field of inductive
logic programming (ILP), which starts from a traditional symbolic AI model like a knowledge base,
and adds learning capabilities to it [31H34]. Unfortunately, ILP is limited to symbolic inputs and
outputs, unlike deep neural networks.

Against the backdrop of such approaches, SATNet [1] promised to integrate “logical structures within
deep learning” with a differentiable MAXSAT solver that can infer logical rules and be used as a
neural network layer. SATNet claimed to have solved problems that were “impossible for traditional
deep learning methods and existing logical learning methods to reliably learn without any prior
knowledge,” most notably solving a Sudoku puzzle visually from images of puzzle digits, and was
awarded with a Best Paper Honorable Mention at 2019’s International Conference on Machine
Learning.

Based on SATNet’s success, one might think that enabling end-to-end gradient-based optimiza-
tion (i.e. making every component in a system differentiable) is sufficient for end-to-end learning
(i.e. learning without intermediate supervision signals). However, defining gradients for an objective
does not, on its own, result in successful learning outcomes, as exemplified by the history of deep
learning. Successful training of architectures with hundreds of layers, where gradients are trivially
well defined, is highly non-trivial and requires careful initialization, batch normalization, adaptive
learning rates, etc. Additionally, without an appropriate inductive bias (like the rules of the game),
learning to solve complex problems like visual Sudoku from relatively few samples is extraordinarily
challenging. It is unlikely that end-to-end gradient-based optimization by itself will, in general, result
in models that generalize well.

Thus, SATNet’s claim to have solved the end-to-end learning problem of visual Sudoku “in a min-
imally supervised fashion” should be revisited. Can SATNet learn to assign logical variables
(symbols) to images of digits (perceptual phenomena) without explicit supervision of this map-
ping? This is also known as the symbol grounding problem [2]], which has long been thought to
be a prerequisite for intelligent agents to perform real-world logical reasoning. If answered in the
affirmative, SATNet would have marked a revolutionary leap forward for the whole field of Al, by
virtue of the difficulty of the symbol grounding problem in visual Sudoku.

The general complexity of the symbol grounding problem embedded in end-to-end learning should
not be underestimated. Figure[I]directly exemplifies the difficulty of the symbol grounding problem
for both human and artificial intelligence. Common measures of abstract reasoning in artificial
intelligence such as DeepMind’s PGM work similarly to Raven’s Progressive Matrices (a test for
human intelligence), where predicting what comes next involves determining the hidden attributes
(symbols) in what has been presented (perceptual phenomena), and inferring the pattern from them
[L1L[35H37]]. Once given the hidden attributes, it is trivial for a human or a combinatorial solver to
infer the pattern [35]. However, jointly inferring the hidden attributes together with the pattern proves
to be a challenging cognitive task in general.
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Figure 1: A challenging Raven’s Matrix puzzle that exemplifies a difficult instance of the symbol
grounding problem. We invite the reader to attempt the puzzle for themselves on the left hand side of
the figure first, before looking at the annotations on the right hand side. Once the given images have
been decoded to an appropriate symbolic representation, it is straightforward for a discrete solver or a
human to solve it. For a full explanation of the solution, please see Appendix Section [A]

1.1 Our Contribution

In this paper, our principal contribution is a re-assessment of SATNet that clarifies the extent of its
capabilities and a discussion of practical solutions that will help future researchers train SATNet
layers in deep networks.

First, we observed from the SATNet authors’ open-source code that intermediate labels are leaked
in the SATNet training process for visual Sudoku. The leaked labels essentially result in a two-step
training process for SATNet, where it first uses the leaked labels to train a digit classifier, and then
uses the symbolic representations of the digits to solve for the Sudoku puzzle. After removing the
intermediate labels, SATNet was observed to completely fail at visual Sudoku (0% test accuracy).
If intermediate labels are available, it is possible to separately pre-train a digit classifier and then
use SATNet, independent of a deep network, to solve for the puzzle. This might even be preferable,
given our finding that SATNet fails in 8 out of 10 random seeds despite access to the labels, which is
evidence that SATNet struggles to learn to ground the Sudoku digits into their symbolic representation.
To be clear, the label leakage did not affect SATNet in the non-visual case, and its success on purely
symbolic inputs and outputs nonetheless marks progress in ILP, but does not fix the field’s persisting
deficiency in dealing with perceptual input.

While solving difficult instances of the symbol grounding problem like visual Sudoku or PGM might
be beyond the reach of SATNet, we found that SATNet also cannot solve easy instances, unless
properly configured. We devised a test called the MNIST mapping problem, whose solution requires
merely digit classification (a simple problem for neural networks) and learning a bijective mapping
between logical variables (a simple problem for discrete solvers). This test serves as an easy instance
of the symbol grounding problem, and is suitable as a sanity test not just for SATNet, but other
prospective differentiable symbolic solvers. Even on a simple test like this, a naive application of
SATNet can cause it to perform worse than models without logical reasoning capabilities.

Our work identifies several factors that affect the learning dynamics of SATNet and provides practical
suggestions for configuring SATNet to enable successful training. We reveal surprising complexities
that are unique to SATNet and break standard deep learning norms. For example, using different



learning rates for different layers in neural networks is not a common practice, since the use of Adam
usually suffices. But for the case of SATNet, even when Adam is used, the backbone layer has to
learn at a slower rate than the SATNet layer for successful training to occur. Surprisingly, we found
that unconditionally increasing the number of auxiliary variables does not increase the expressivity
of the model, but instead leads to a complete failure in learning. Further adjusting the choice of
optimizer and neural architecture led to statistically significant improvements, culminating in near
perfect test accuracy (99%).

The rest of the paper is organized as follows: Section [2]reviews the relevant technical background
for SATNet and visual Sudoku. Section [3|examines the subtle nature of the label leakage in the
original SATNet paper and its ramifications. Section[d]describes the MNIST mapping problem, and
investigates optimal SATNet configurations for this simple MNIST-based test. Finally, we conclude
in Section

2 Background

2.1 SATNet

SATNet is a neural network layer that solves a semidefinite programming (SDP) relaxation of the
following MAXSAT problem,

max i \”/ 1{s,;0; > 0}, (D

se{=1,1}"
ve{-1.1} j=1i=1

where o € {—1,1}" denotes assignments to n binary variables, and §; € {—1,0,1}™ denotes
the sign of variable ¢; in m clauses. The set of 5;;, denoted by S, forms the SATNet layer’s
learnable parameters. ¥ can be partitioned into two disjoint sets Z and O, which are represented in
SATNet by layer inputs Z7 and outputs Z» (which can be either probabilistic or strictly binary),
and their respective continuous relaxations Vz and V». Gradients from the layer output V7, L are
backpropagated to both the layer’s weights in the form of Vg £ and to the layer input in the form of
V z, L. The two main tunable hyperparameters in a SATNet layer are the number of clauses m and
the number of auxiliary variables aux (which “play a role akin to register memory that is useful for
inference”). Auxiliary variables are also input variables, but unlike Z7, they are not the output of
preceding layers.

2.2 Visual Sudoku

Sudoku is a number puzzle played out on a 9-by-9 grid. Each of the 9x9=81 cells has to contain
a digit from 1 to 9. The game starts out from a partially filled grid, and the object of the game is
to complete the rest of the cells on the grid. Each of the digits from 1 to 9 has to appear exactly
once in every row, column, and each of the nine 3-by-3 subgrids. In the non-visual case, the state
of the Sudoku grid can be encoded using 9x81=729 binary variables, and SATNet can learn to map
from the binary encoding of the initial grid to the binary encoding of the completed grid without the
programmer having to explicitly encode for the rules of the game. Given 9000 training and 1000 test
examples (with 36.2 pre-filled cells on average), where each example is a pair consisting of the initial
and completed grid, SATNet achieves 99.7% training and 98.3% test accuracy. By comparison, a
symbolic solver that knows the rules of the game can provably solve the game perfectly [38]], while a
purely deep learning based approach, trained on a million examples, scores 70.0% on a test set of
thirty games [39]. We report on other related work on non-visual Sudoku in Appendix Section [B]

In visual Sudoku, the inputs are now 81 images of digits (taken from the MNIST dataset), with ‘0’
standing in for empty cells. They are processed by a convolutional neural network (CNN) backbone
with a SATNet layer, which performs at 93.6% training and 63.2% test accuracy using the same
number of training and test examples. The SATNet authors contextualized their findings by claiming
that the “theoretical best” test accuracy is capped at 74.8% (=~ 0.992°¢2), which is the probability
that the LeN eﬂ CNN backbone, which has 99.2% test accuracy on MNIST, has correctly classified
all the pre-filled cells.

'To be precise, the SATNet authors used a bigger version with ~10x more parameters than the original.
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Figure 2: A visualization of the difference between symbolic and perceptual inputs.

3 SATNet Fails at Symbol Grounding

3.1 The Absence of Output Masking

While every Sudoku puzzle corresponds to 729 logical variables in the MAXSAT problem (excluding
the auxiliary variables for now), the number of pre-filled cells and their positions differ depending
on the puzzle. Thus, Z and O are different for each example, even though the sizes of Z7 and Zp
are fixed beforehand and not example-dependent. A straightforward way to solve this is to apply an
appropriate bit mask depending on the example.

Consider a toy example with 5 variables vy = 1,v9 = 0,v3 = 0,v4 = 1,v5 = 0 where Z = {1, 2,3}
and O = {4,5}. Then, the input to SATNet should be 10000 with the bit mask 11100, and the output
should be 00010 with the bit mask 00011. The problem with the original SATNet implementation is
that the bits that correspond to the inputs are not masked in the output.

Not masking the output might not seem problematic, given that SATNet does not modify input
variables Z7 nor their relaxations V7. But consider the decomposition of the loss function £ into a
sum of binary cross entropies (BCE) between the SATNet variables z and the training label /.

L= zn:BCE(zi, li) = BCE(z,l;) + Y _ BCE(z,1,). )

i=1 €L o€

Since the z7 are not modified by SATNet, z; = [; for ¢ € Z, effectively zero-ing out any loss
contributed by terms in zz. This is true when SATNet is applied to purely symbolic problems like
non-visual Sudoku.

However, once perceptual input is introduced, z; is not directly accessible by SATNet. Instead, the
input to the SATNet layer is a symbolic representation z; of features extracted from the data (see
Figure ). Thus, the loss from z7 in Equation [2]is non-zero before the neural network has learned to
ground the symbols appropriately, i.e. z; = z; = l;. Not masking the output to SATNet thus leaks
label information to the layers before the SATNet layer, effectively training a classifier that learns to
map from the perceptual data to the appropriate symbol representation, i.e. symbol grounding.

3.2 Visual Sudoku

Table 1: Effects of Output Masking

Non-Visual Sudoku Visual Sudoku
Accuracy Original Masked Outputs Original Masked Outputs
Train 99.71+0.0% 99.7+0.0% 18.5+12.3% 0.0£0.0%
Test 97.6+0.1% 97.6+0.1% 11.9+7.9% 0.0+0.0%

We re-ran the Sudoku experiments using the SATNet authors’ open-sourced implementation with
identical experimental settings, but over 10 different random seeds to get standard error confidence
intervals. Table |l| shows clearly that output masking does not affect the results in the non-visual
case, but causes SATNet to fail completely for visual Sudoku, which is what we expect from the
discussion in the previous section. Once the intermediate labels are gone, the CNN does not ever



learn to classify the digits better than chance. SATNet’s failure at symbol grounding directly leads to
its failure at the overall visual Sudoku task.

Interestingly, we also found that SATNet’s performance in visual Sudoku in the absence of output
masking is highly dependent on the random initialization, with 8/10 random seeds leading to complete
failure as well. This explains why SATNet’s performance over 10 runs (18.5% training accuracy) is
dramatically lower than what was originally reported (93.6% training accuracy). Therefore, even for
problems where we have access to intermediate labels, leaking them indirectly via the absence of
output masking is strictly less desirable than directly pre-training a neural network classifier with
those labels. In Section 4.1} we note important strategies for mitigating complete failure.

Of the 2 runs that succeeded (i.e. had non-zero training accuracy, specifically 93.2% and 91.7%
respectively), we found that the label leakage basically results in a two-step training process for
SATNet, where the CNN first learns to do MNIST digit classification, and then the SATNet layer
learns to solve the actual Sudoku problem. We show in Figure [3] training accuracy plots of two
example runs, one successful and the other not. They are annotated with corresponding plots (at
the bottom for comparison) of the CNN’s classification accuracy on the MNIST test set. For the
successful runs, we observe that the training accuracy for visual Sudoku stays at zero for a small
number of epochs, during which time the leaked labels help train the CNN to be an MNIST digit
classifier. Only after the digit classifier works to some degree, does the training accuracy for visual
Sudoku actually become non-zero. By contrast, in most of the unsuccessful runs, the CNN takes a
very long time to become somewhat proficient at digit classification, and even after it does so, the
SATNet layer seems unable to adapt to it, resulting in a permanent plateau at 0% training accuracy.

Visual Sudoku (Successful) Visual Sudoku (Unsuccessful)
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Figure 3: The graphs on the left show a successful run of SATNet on visual Sudoku, while the graphs
on the right show an unsuccessful run. The successful run in the absence of output masking leads
to a two-step training process, where the CNN first rapidly learns to classify digits, and then the
SATNet layer learns to solve for Sudoku. The red vertical dotted line demarcates the point at which
the training accuracy for visual Sudoku becomes non-zero. Unsuccessful runs typically take a long
time for the CNN to classify digits, and never does better than 0% training accuracy at the overall
visual Sudoku task.

4 MNIST Mapping Problem

The MNIST mapping problem involves a symbolic problem with 20 variables v;, where the first ten
variables are input (i.e. Z = {1,...,10}), and the next ten are output (i.e. O = {11,...,20}). But
the vz are not provided directly; instead the input is given as perceptual data in the form of an MNIST
digit image, and the challenge is to map an image of digit ¢ to the variable v;;1;. We assume that
these variables are boolean (or the probabilistic equivalent, i.e. random variables taking real values in
[0, 1]), but this should be adapted accordingly to the symbolic representation of a given solver.



There are two distinct sub-problems. The first sub-problem involves classifying an MNIST digit
image into vy, . . ., v19 (using a neural network). The second sub-problem involves learning a bijection
(or an equivalent permutation) to v11, ..., Vg (using a symbolic solver), from which the class of
the input image has to be identified. Both sub-problems taken on their own are considered to be
easy problems. MNIST digits can be easily classified to 99% test accuracy [40], while permutation
groups under equivalence queries are known to be exactly learnable in polynomial time [41]]. Hence,
we propose that a suitable sanity test for a differentiable symbolic solver is to solve the MNIST
mapping problem to an accuracy of 99%. Note that a model that does not have to learn the bijection
can circumvent the symbol grounding problem entirely by simply learning the output labels directly.
Therefore, the test is strictly intended to be a check for symbol grounding, rather than a grand Al
challenge that necessitates the combination of pattern recognition and logical reasoning as in visual
Sudoku or PGM.

4.1 Configuring SATNet Properly

Surprisingly, some SATNet configurations fail the test, not by a slight margin, but completely (i.e. test
accuracy no better than chance; we count them using 12% as a threshold to account for variance). In
general, we found that the successful training of SATNet can be very sensitive to specific combinations
of hyperparameters, optimizers, and neural architectures. We present four empirical findings using
experiments on the MNIST mapping problem. All experiments were ran for 50 training epochs
over 10 random seeds to get standard error confidence intervals. The Sudoku CNN, which was the
backbone architecture used in the SATNet author’s visual Sudoku implementation, is used throughout
unless stated otherwise. We evaluate the results by presenting test accuracies with their confidence
intervals and the number of complete failures in parentheses. For comparison, a non-SATNet baseline,
which consists of the Sudoku CNN but with the SATNet layer replaced by two fully connected layers
(1000 hidden units and ReLU), performs at 72.1£13.3% (3). At a minimum, SATNet should perform
better than that, since its raison d’étre disappears if it can be bested by equivalent models without
logical reasoning capabilities.

Finding 1 Too little “logic” (i.e. low m) or too much “slack” (i.e. high aux) can cause failure.
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Figure 4: Both graphs show test accuracy on the MNIST mapping problem with the shaded interval
representing the standard error.

The number of clauses m controls the capacity of SATNet (rank of clause matrix), and we found that
it can cause failure or result in terrible test accuracy when it is too low relative to what is needed for
the problem. The number of auxiliary variables auz also controls model capacity, but we observed
that if it is too high for a given m, it can also cause failure (because most of the clauses end up being
filled with meaningless input-independent auxiliary variables). High m or low auz do not affect test
accuracy on the MNIST mapping problem, but they affect the amount of compute the SATNet layer
uses.



Finding 2 The backbone layer has to learn at a slower rate than the SATNet layer.

Table 2: Effects of Different Learning Rates on the SATNet and Backbone Layer on Test Accuracy

SATNet Layer Backbone Layer Learning Rate

Learning Rate 1x1073 1x10* 1x10°
1x107 19.9£8.6% (9) 90.0+£8.7% (1) 96.3+0.2% (0)
1x10* 17.4+43% (8) 74.6£8.6% (0) 96.1£0.2% (0)
1x107 14.8+£3.6% (9) 31.7£7.1% (5) 72.4£5.3% (0)

Table 2] shows the effect of differential learning rates between the SATNet and CNN backbone layers
on test accuracy and number of failures, using Adam [42] for both layers. If the backbone layer has
a higher learning rate than the SATNet layer, this often leads to failure. Optimal performance is
observed when the backbone layer has a lower learning rate than the SATNet layer. Note that this
might be counter-intuitive, given that in the label leakage scenario, the backbone CNN had to learn
digit recognition before the SATNet layer could learn to solve Sudoku. But without label leakage,
having a higher learning rate for the backbone does not make sense because it cannot learn anything
useful without the help of the SATNet layer.

Finding 3 Optimizing the backbone layer with SGD and the SATNet layer with Adam improves
both training and test accuracy.

Instead of simply using different learning rates, swapping the optimizer for the backbone layer with
SGD raises test accuracy from 96.3 £0.2% (0) to 98.6+0.1% (0) (similarly so for training accuracy).

Finding 4 A sigmoid output layer for the backbone is preferable to softmax.

Table 3: Effects of Different Neural Architectures on Test Accuracy

Backbone Output Layer
Architectures ~ Parameters Softmax Sigmoid
LeNet [40] 68,626 63.3+14.1% (4)  98.84+0.0% (0)

Sudoku CNN 860,780 98.6£0.1% (0)  99.1+0.0% (0)
ResNet18 [43] 11,723,722  67.6£6.3% (0)  97.2£0.9% (0)

The output of the CNN backbone has to take real values in [0, 1]; the SATNet authors’ implementation
used a softmax output layer to achieve this. We found that a sigmoid output layer strictly outperforms
a softmax layer in all three architectures tested. When softmax is used, we observed that the size of
the architecture can result in poor performance if it is too small or too big. In the case where it is too
big, it is possible for accuracy to degrade rapidly after reaching its peak (we don’t use early stopping).
Of the three, the Sudoku CNN appears to be the optimal size.

Every model we tested failed at visual Sudoku, demonstrating the non-triviality of visual Sudoku’s
grounding problem (since getting even one puzzle in the test set correct necessitates the accurate
classification of 36.2 digits on average). However, even for a seemingly easy instance of the symbol
grounding problem in the form of MNIST mapping, it was highly non-trivial to find the correct
SATNet configuration that would lead to 99% test accuracy. This shows that the current state of
SATNet falls significantly short of its promise to integrate logical reasoning in deep learning.

5 Conclusion

In this paper, we presented a detailed analysis of SATNet’s capabilities, and provided practical
solutions that will help future researchers train SATNet layers in their deep neural networks more
effectively. Specifically, we noted that the original experimental setup for visual Sudoku resulted in
intermediate label leakage. After removing the intermediate labels, SATNet is found to completely
fail at the task of visual Sudoku due to its inability to ground the images of the puzzle digits into



the appropriate symbolic representation. We further introduced the MNIST mapping problem as an
easier instance of the symbol grounding problem compared to visual Sudoku, and found that SATNet
needs to be delicately configured for training to be successful. In particular, the number of auxiliary
variables cannot be increased unconditionally with respect to the number of clauses, and the backbone
layer has to learn at a slower rate than the SATNet layer.

We can apply what we have learned about SATNet and its failure to solve visual Sudoku’s symbol
grounding problem more generally to other attempts to integrate logical reasoning into deep learning.
Given that logical reasoning modules act at a symbolic level, while generic deep learning modules
act at a sub-symbolic level, the interface between these two levels has to involve a symbol grounding
problem. Hence, even if the intermediate label leakage identified in this paper might be SATNet-
specific, we think that explicit tests against simple, interpretable instances of the symbol grounding
problem will be fruitful for future researchers in discerning their claims about end-to-end learning
(versus end-to-end gradient-based optimization).

In general, we think that the differences between deep learning and logic mirror the ones between
continuous and discrete optimization. These differences go far deeper than the superficial lack of
derivatives in discrete optimization, and we believe true progress has to come from significantly
tighter integrations between deep learning and logic. We are excited that our work brings these
differences to the forefront and encourages the community to think more critically about how to go
about integrating logical reasoning into deep learning.

Broader Impact

Reproducibility In recent years, there has been a reproducibility “crisis” in the natural sciences
and medicine [44-46], with the problem even extending into the computational sciences like machine
learning [47H50]. There is little incentive for independent researchers to put in the effort to re-verify
the claims of a paper that has gone through peer review. This is not least because of the possibility that
the failure in replication might be due to problems with the replication rather than problems with the
original claims. However, we believe that prominent papers, especially ones like SATNet that have
won conference awards, deserve extra scrutiny. By re-assessing SATNet’s original claims, we provide
additional credibility for established findings in the machine learning literature. Sober re-assessments
of cutting edge Al technology also help to downplay the ‘hype’, allowing non-expert stakeholders
from the broader society to be clear-eyed about the current state of the art. We regret if this paper
appears overly critical of the impressive achievements made by SATNet. A potentially negative
consequence of our paper is that it discourages researchers from making their code open-source
because of the additional scrutiny that this will invite. Critical assessments of Al technology might
also lower both public and commercial funding for Al due to more realistic expectations, as has
happened during the Al winters.

The Importance of the Symbol Grounding Problem There have been many attempts to combine
pattern recognition and logical reasoning into a single neural network model, but most of these
attempts essentially focus on reducing the problem to the relaxation of non-differentiable functions.
Our work on SATNet clearly exemplifies that addressing the optimization issues inherent in combining
logic and deep learning will not be enough to train models in a minimally supervised end-to-end
learning fashion. Without a significant breakthrough, solving symbol grounding problems without
intermediate labels will probably remain out of reach. Our work aims to highlight the importance of
explicitly addressing the symbol grounding problem, and we hope that future research to do so will
expand the applications of machine learning and Al beyond System-1 pattern recognition capabilities.
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Appendix

A Solution to the Raven’s Matrix puzzle

A C

Figure 5: The three basic glyphs are formed from half a circle, a triangle, and a rectangle respectively.

Prompt Prompt
L:Mirror(C) L:A L:Mirror(B)
| E f R:.C R:Mirror(A) R:B
L:Mirror(A) L:B L:C
>C & | RA R:Mirror(B) R:Mirror(C)
3 E LA LB
R:Rotate[ R:Rotate[
Mirror(A)] Mirror(B)]
[ J [ J
Choices Choices
L:Rotate[ L:Rotate(C) L:C
_I_l Mirror(C)] R:Mirror(C) R:Rotate[

R:.C Mirror(C)]

L:Rotate[ L/R:Rotate[

|_| I—|— |_|_ Mirror(C)] Mirror(C)]

R:Rotate(C)

Figure 6: The solution to the Raven’s Matrix puzzle is the choice on the top right.

The source of this puzzle and its solution is user265554 [51]] on Puzzling Stack Exchange.

Each panel is composed of a glyph on the left hand side (L) and a glyph on the right hand side (R).
There are three basic glyphs (see Figure[5): a crescent (A), a half triangle (B), and a half rectangle
(C). Each glyph can also be mirrored (Mirror), i.e. flipped horizontally, or rotated by 180 degrees
(Rotate). In Figure[6] we annotate every panel in both the prompt and the choices with the symbols
that represent it. It is clear that the blank in the prompt should be filled by a left glyph C and a right
glyph Rotate[Mirror(C)], which is the choice on the top right.

B Related Work on Non-Visual Sudoku

On a dataset with 216,000 puzzles split in a 10:1:1 train-val-test ratio, a deep (recurrent relational)
network that has access to positional information for each cell scores 100% test accuracy on puzzles
with 33 pre-filled cells and 96.6% on puzzles with 17 pre-filled cells [29]. Amos and Kolter [27]
use a differentiable quadratic programming layer called OptNet, which like SATNet has no a priori
knowledge of the rules, in a neural network to solve for Sudoku. OptNet does not scale well
computationally and can only solve 4-by-4 Sudokus.
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C Experimental Settings

In the Supplementary materials, we provide source code and the shell commands to replicate all the
experimental results in the paper.

C.1 SATNet Fails at Symbol Grounding

The experimental settings for SATNet in Section 3] are identical to the original paper and based on
the authors’ open-sourced implementation available at https://github.com/locuslab/SATNet.
Specifically, the CNN used is the sequence of layers: ConvI-ReLU-MaxPool-Conv2-ReLU-MaxPool-
FC1-ReLU-FC2-Softmax, where Convl has a 5x5 kernel (stride 1) and 20 output channels, Conv2 has
a 5x5 kernel (stride 1) and 50 output channels, FCI has size 800x500, FC2 has size 500x10, and the
MaxPool layers have a 2x2 kernel (stride 2). This is roughly the LeNet5 architecture, but with one
less fully connected layer at the end and around 10x the number of parameters. The SATNet layer
contains 300 auxiliary variables, with n = 729 and m = 600. The full model is trained using Adam
for 100 epochs using batch size 40, with a learning rate of 2x107 for the SATNet layer and 1x107 for
the CNN.

C.2 MNIST Mapping Problem

We use batch size 64 for training throughout all the experiments. We use the Sudoku CNN described
above in Appendix Section as the backbone layer for all the experiments, except the one in
Finding 4 where we vary the architecture. We use m = 200, aux = 100 for the SATNet layer for all
the experiments, except the one in Finding 1 where we vary m and aux.

Non-SATNet baseline: The whole network was trained with Adam using a 2x10- learning rate.

Finding 1: The SATNet layer was trained with a 2x107 learning rate, and the backbone layer was
trained with a 1x107 learning rate, both using Adam as was done above in Appendix Section

Finding 2: Both the SATNet layer and the backbone layer were trained with Adam.

Findings 3 and 4: The SATNet layer was trained with a 1x10- learning rate using Adam, and the
backbone layer was trained with a 1x10°! learning rate with SGD.
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D More Experimental Results for the MNIST Mapping Problem

D.1 Non-SATNet Baseline

The training accuracy for the non-SATNet baseline is 72.4+13.4% (3).

D.2 Experiment 1

Table 4: Effects of m and aux on Training and Test Accuracy

m

auxr

Training Accuracy

Test Accuracy

20
40
60
80
20
40
60
80
20
40
60

100
100
100
100
200
200
200
200
400
400
400
400

50

50

50

50

100
100
100
100
200
200
200
200
200
400
600
800
200
400
600
800
200
400
600
800

86.7-£8.4% (1)
95.64:0.3% (0)
95.740.3% (0)
96.240.2% (0)
82.248.4% (1)
85.948.3% (1)
95.340.5% (0)
95.14+0.2% (0)
43.9413.5% (6)
59.6+13.3% (4)
60.0+13.4% (4)
94.740.3% (0)
86.348.4% (1)
44.8412.5% (4)
25.6+7.7% (7)
35.1£10.3% (6)
96.240.1% (0)
45.6+12.9% (4)
62.4+11.5% (2)
32.7+£10.4% (5)
96.440.2% (0)
92.14+4.2% (0)
62.8413.5% (3)
69.312.8% (3)

86.848.4% (1)
95.520.3% (0)
95.64-0.4% (0)
96.040.3% (0)
82.448.4% (1)
85.948.3% (1)
95.340.5% (0)
94.94+0.2% (0)
44.0413.4% (6)
59.7413.3% (4)
60.2:13.3% (4)
94.64+0.3% (0)
86.248.4% (1)
45.04+12.6% (4)
26.24+7.9% (7)
35.8410.4% (6)
95.840.2% (0)
45.34+12.9% (4)
62.4+11.7% (2)
33.24£10.5% (5)
96.040.2% (0)
91.844.0% (0)
62.7413.4% (3)
69.44+12.7% (3)

D.3 Experiment 2

Table 5: Effects of Different Learning Rates on the SATNet and Backbone Layer on Training

Accuracy

SATNet Layer

Learning Rate

Backbone Layer Learning Rate

1x107?

1x10*

1x10

1x1073
1x10*
1x10°°

19.6+8.5% (9)
17.044.1% (8)
14.4+3.4% (9)

90.4+8.8% (1)
74.94+8.8% (0)
31.847.1% (5)

96.740.2% (0)
96.5+0.2% (0)
71.945.4% (0)

D.4 Experiment 3

The training accuracy rose from 96.7+0.2% (0) to 99.14+0.1% (0).
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D.S Experiment 4

Table 6: Effects of Different Neural Architectures on Training Accuracy

Backbone Output Layer
Architectures ~ Parameters Softmax Sigmoid
LeNet [40] 68,626 63.2+14.2% (4)  99.1+0.0% (0)

Sudoku CNN 860,780 99.1+£0.1% (0)  99.5+0.0% (0)
ResNet18 [43] 11,723,722  67.6£6.2% (0)  97.4£0.4% (0)

D.6 Further Investigation into m and aux

One of the reviewers proposed setting m and auz according to the relationship m = out + auz,
where out is the number of output variables. In the case of the MNIST mapping problem, we observed
that while not necessarily optimal, it can be a good rule of thumb.

Another reviewer suggested that Experiment 1 be re-run with smaller values of auxz. We show the
results of re-running Experiment 1 with 10x smaller auz in Figure[7]] We can observe that in this
regime where m is significantly higher than aux, larger m and smaller auz show a more muted
benefit.

Effect of m Effect of aux

96

©
=

©
N

Test Accuracy

©
o
=)

90

®
I
[

— aux=5 m=100
— aux=10 — m=200
88 —— aux=20 —— m=400

©
o
=3

20 40 60 80 20 40 60 80
Number of Clauses (m) Number of Auxiliary Variables (aux)

Figure 7: Both graphs show test accuracy on the MNIST mapping problem with the shaded interval
representing the standard error.
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